Задание к теме 1. ОСНОВНЫЕ КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

- а) напишите молекулярные и ионные уравнения, протекающие между предложенными веществами;
- б) составьте уравнения реакций, протекающих в цепи превращений;
- в) составьте уравнения всех реакций, протекающих между веществами;
- г) назовите перечисленные ниже соединения и определите класс.
- 1. a) CO₂: 1) HCl, 2) H₂O, 3) KOH, 4) CaCO₃ + H₂O, 5) MgO;
 - 6) $Ca \rightarrow CaO \rightarrow Ca(OH)_2 \rightarrow CaCO_3 \rightarrow Ca(HCO_3)_2 \rightarrow CaCl_2$;
 - в) H₃PO₄ и KOH;
 - Γ) KHCO₃, Al₂(SO₄)₃, Mg(OH)Cl, H₂SO₄, Fe₂O₃, KMnO₄, HBr, H₂O₂.
- 2. a) $Fe(OH)_2$: 1) CaO, 2) H_2SO_4 , 3) KOH, 4) $O_2 + H_2O$, 5) SO_3 (t°);
 - 6) $P \rightarrow P_2O_3 \rightarrow P_2O_5 \rightarrow H_3PO_4 \rightarrow K_2HPO_4 \rightarrow K_3PO_4$;
 - в) Fe(OH)₃ и HCl;
 - Γ) Al(OH)Cl₂, CO, HMnO₄, HCl, Fe(OH)₃, KH₂PO₄, K₂CrO₄, CuSO₄.
- 3. a) K₂CO₃: 1) HClO₄, 2) H₂O, 3) KOH, 4) HBr, 5) FeO;
 - 6) $Al_2O_3 \rightarrow Al \rightarrow Al(OH)_3 \rightarrow K[Al(OH)_4] \rightarrow AlCl_3 \rightarrow Al(OH)_3$;
 - в) Al(OH)₃ и NaOH;
 - Γ) Cd(OH)₂, K₂CO₃, H₂S, BaO, Pb(ON)NO₃, HclO₄, FeCl₃.
- 4. a) HCl: 1) Cu, 2) NH₄OH, 3) Cu(OH)₂, 4) K₂SO₄, 5) FeO;
 - 6) $S \rightarrow SO_2 \rightarrow SO_3 \rightarrow H_2SO_4 \rightarrow KHSO_4 \rightarrow K_2SO_4$;
 - в) H₂CO₃ и Ca(OH)₂;
 - Γ) K₂O₂, HI, PbO₂, Ca(HCO₃)₂, Zn(NO₃)₂, Co(OH)₂, Al(OH)₂Cl.
- 5. a) CaO: 1) HNO₃, 2) H₂O, 3) KOH, 4) SO₂, 5) Ca(HCO₃)₂;
 - 6) $Fe(OH)_2 \rightarrow FeO \rightarrow Fe \rightarrow FeCl_2 \rightarrow FeCl_3 \rightarrow Fe(OH)Cl_2$;
 - в) Fe(OH)₃ и HNO₃;
 - Γ) A₂O₃, AgNO₃, FeSO₄, HPO₃, Mg(OH)₂Cl, Zn(OH)₂, NaHSO₄, Cu₂O.
- 6. a) KHCO₃: 1) H₂SO₄, 2) K₂O, 3) KOH, 4) CO₂, 5) Ca;
 - β Cu_2S → CuO → $CuSO_4$ → Cu → $CuCl_2$ → Cu(OH)Cl;
 - в) Al(OH)₃ и NaOH;
 - Γ) Mn(OH)₃, CO₂, Al(NO₃)₃, Fe(OH)₂Cl, H₂CO₃, Mg(HCO₃)₂, PH₃.
- 7. a) KOH: 1) HClO, 2) Ca(OH)₂, 3) CuSO₄, 4) CO₂, 5) Al(OH)Cl₂;
 - 6) $C \rightarrow CO \rightarrow CO_2 \rightarrow H_2CO_3 \rightarrow KHCO_3 \rightarrow K_2CO_3$;
 - в) FeCl₃ и KOH;
 - Γ) Mn₂O₇, Ba(OH)₂, Ca₃(PO₄)₂, HNO₃, KHSO₃, CoCl₂, Zn(OH)NO₃.
- 8. a) HClO₄: 1) SO₃, 2) FeO, 3) MnSO₄, 4) HNO₃, 5) NaOH;
 - 6) PbO \rightarrow Pb \rightarrow Pb(NO₃)₂ \rightarrow Pb(OH)₂ \rightarrow K₂[Pb(OH)₄] \rightarrow K₂SO₄;
 - в) Al(OH)₃ и HCl;
 - r) Fe(OH)₂, Cl₂O₃, HBr, Mg(NO₃)₂, Na₂O₂, AlOHSO₄, PbS, Kal(SO₄)₂.

- 9. a) FeO: 1) H₂SO₄, 2) Al₂O₃, 3) K₂CO₃, 4) CO₂, 5) KOH;
 - 6) $N_2 \rightarrow NH_3 \rightarrow NO \rightarrow NO_2 \rightarrow HNO_3 \rightarrow KNO_3$;
 - в) KH₂PO₄ и KOH;
 - Γ) H₂CrO₄, Cu(OH)₂, Fe(OH)SO₄, CaHPO₄, Zn(NO₃)₂, BaBr₂, MnO₂.
- 10. a) Al(OH)Cl₂: 1) HCl, 2) H₂O, 3) NaOH, 4) K₂CO₃, 5) CO₂;
 - 6) KCl \rightarrow K \rightarrow K₂O₄ \rightarrow H₂O₂ \rightarrow O₂ \rightarrow ZnO;
 - в) H_2S и $Ba(OH)_2$;
 - Γ) SO₃, H₄P₂O₇, AlPO₄, NaHSO₃, Mn(NO₃)₂, Mg(OH)₂, (FeOH)₂SO₄.
- 11. a) H₂O: 1) K₂O, 2) CO₂, 3) MnCl₂, 4) Al₂O₃, 5) H₂SO₄;
 - 6) $CaCl_2 \rightarrow Cl_2 \rightarrow KCl \rightarrow HCl \rightarrow FeCl_2 \rightarrow FeCl_3$;
 - в) Н₃РО₄ и NаОН;
 - Γ) Cr₂O₃, HNO₂, HCl, FeSO₄, HclO₄, Al(OH)₃, KHCO₃, Fe(OH)Cl₂.
- 12. a) Na₂SO₃: 1) HCl, 2) BaCl₂, 3) KOH, 4) CaSO₄, 5) SO₃;
 - 6) $Ca_3N_2 \rightarrow NH_3 \rightarrow NH_4Cl \rightarrow NH_4OH \rightarrow Al(OH)_3 \rightarrow Al_2O_3$;
 - в) AlOHCl₂ и KOH;
 - Γ) HBr, K₂Cr₂O₇, OF₂, NaI, KHSO₄, Fe(OH)₂Cl, H₂SO₃, Ba(OH)₂.
- 13. a) H₂CO₃: 1) HCl, 2) CaCl₂, 3) KOH, 4) SO₂, 5) BaO;
 - 6) $SiO_2 \rightarrow K_2SiO_3 \rightarrow H_2SiO_3 \rightarrow SiO_2 \rightarrow Si \rightarrow Ca_2Si$;
 - в) Cr(OH)₃ и HNO₃;
 - Γ) HPO₃, Fe₂(SO₄)₃, Al(OH)₂Cl, Mg(HCO₃)₂, P₂O₅, H₂S, Co(OH)₂.
- 14. a) Al₂O₃: 1) H₂SO₄, 2) CaO, 3) KOH, 4) SO₂, 5) K₂SO₄;
 - 6) Na \rightarrow NaH \rightarrow NaOH \rightarrow Cu(OH)₂ \rightarrow K₂[Cu(OH)₄] \rightarrow CuSO₄;
 - в) Cr(OH)₃ и NaOH;
 - Γ) Be(OH)₂, H₃BO₃, Na₂ZnO₂, H₂O₂, Mn₂O₃, Cu(NO₃)₂, Co(OH)Cl.
- 15. a) NaOH: 1) ZnO, 2) SO₂, 3) KHCO₃, 4) Al(OH)Cl₂, 5) H₂S;
 - 6) $S \rightarrow SO_2 \rightarrow H_2SO_3 \rightarrow KHSO_3 \rightarrow K_2SO_3 \rightarrow K_2S_2O_3$
 - в) $Fe(OH)_2$ и H_2SO_4 ;
 - Γ) HI, Ag₂O, Pb(CH₃ClO)₂, [Fe(OH)₂]₂SO₄, Ca(HCO₃)₂, Cu₂S, CuOHCl.
- 16. a) CuSO₄: 1) H₂S, 2) BaCl₂, 3) KOH, 4) HNO₃, 5) CO₂;
 - 6) $Ca \rightarrow Ca(OH)_2 \rightarrow CaCO_3 \rightarrow CaO \rightarrow Ca_3(PO_4)_2 \rightarrow CaSO_4$;
 - в) K₂HPO и HCl;
 - Γ) Mg₃N₂, KH₂PO₄, Mn(OH)₃, Al(OH)Cl₂, NaHCO₃, Zn(OH)₂, K₂Cr₂O₇.
- 17. a) Al(OH)₃: 1) HClO₄, 2) KCl, 3) KOH, 4) CaO + t°, 5) CO₂;
 - 6) $P \rightarrow P_2O_3 \rightarrow P_2O_5 \rightarrow H_3PO_4 \rightarrow NaH_2PO_4 \rightarrow Na_3PO_4$;
 - в) FeCl₃ и KOH;
 - Γ) CrO₃, FeOHCl, KOH, HClO₄, KAlO₂, CaHPO₄, KAl(SO₄)₂, K₂O₂.
- 18. a) ZnO 1) H₂SO₄, 2) H₂O, 3) NaOH, 4) CaO, 5) K₃PO₄;
 - 6) $Al_2O_3 \rightarrow Al \rightarrow Al(OH)_3 \rightarrow K[Al(OH)_4] \rightarrow AlCl_3 \rightarrow Al(OH)_3$;
 - в) Al(OH)₂Cl и HCl;
 - Γ) H₂SiO₃, Pb(OH)NO₃, KMnO₄, Zn(NO₃)₂, Ba(OH)₂, CuI, K₂HPO₄.
- 19. a) H₂SO₄: 1) KCl, 2) K₂O, 3) Zn(OH)₂, 4) CO₂, 5) Zn;
 - 6) $S \rightarrow SO_2 \rightarrow SO_3 \rightarrow H_2SO_4 \rightarrow KHSO_4 \rightarrow K_2SO_4$;
 - в) H₃PO₄ и NaOH;
 - r) Be(OH)₂, H₂SO₄, Co(NO₃)₂, CdCl₂, Cr₂O₃, Ca(HCO₃)₂, MnOHCl.

- 20. a) NaOH: 1) HCl, 2) Ba(OH)₂, 3) Al(OH)₂Cl, 4) FeCl₂, 5) SO₂;
 - σ) $Cr_2O_3 → Cr → CrCl_3 → Cr(OH)_3 → KCrO_2 → K_2CrO_4;$
 - в) Ni(OH)₃ и HCl;
 - Γ) CuSO₄, PbCl₂, Mn₂O₇, K[Al(OH)₄], H₂CO₃, AlOHSO₄, KH.
- 21. a) CaO: 1) HCl, 2) CuSO₄, 3) FeO, 4) CO₂, 5) Al₂O₃;
 - 6) Fe \rightarrow FeCl₃ \rightarrow Fe(OH)₃ \rightarrow Fe₂O₃ \rightarrow Fe \rightarrow FeCl₂;
 - в) CoCl₂ и NaOH;
 - Γ) Al₂(SO₄)₃, K₂HPO₄, H₃PO₄, MgOHCl, Mg(OH)₂, PH₃, N₂O.
- 22. a) BeO: 1) HCl, 2) H₂O, 3) NaOH, 4) K₂O, 5) NaCl;
 - 6) $Cu \rightarrow CuCl_2 \rightarrow Cu(OH)_2 \rightarrow CuO \rightarrow Cu \rightarrow Cu(NO_3)_2$;
 - в) Cr(OH)₃ и HBr;
 - Γ) CoS, Fe₃O₄, CuCl₂, AlOHSO₄, P₂O₅, NaHCO₃, CO.
- 23. a) N₂O₅: 1) NaCl, 2) H₂O, 3) KOH, 4) CaO, 5) CO₂;
 - δ) Si → SiO → K₂SiO₃ → H₂SiO₃ → KHSiO₃ → K₂SiO₃:
 - в) Cr(OH)₃ и HBr;
 - Γ) H₂SO₃, H₂P₄O₇, K₃[Fe(CN)₆], Na₂O₂, NO, K₃PO₄.
- 24. a) HBr: 1) Zn, 2) KOH, 3) SO₃, 4) FeO, 5) H₂SO₄;
 - 6) $N_2 \rightarrow NO \rightarrow NO_2 \rightarrow HNO_3 \rightarrow Zn(NO_3)_2 \rightarrow ZnO$;
 - в) FeCl₂ и KOH;
 - Γ) K₂Cr₂O₇, NaHS, K₄[Fe(CN)₆], Pb(OH)₂, H₂O₂, H₄SiO₄.
- 25. a) KOH: 1) Al, 2) H₂O, 3) H₃PO₄, 4) SO₂, 5) FeCl₂;
 - 6) $K \rightarrow K_2S \rightarrow S \rightarrow SO_2 \rightarrow SO_3 \rightarrow H_2SO_4$;
 - в) Al(OH)₃ и HBr;
 - Γ) Fe₂O₃, KHSO₄, Na[Al(OH)₄], Fe(OH)₃, SO₃, HCN, CO₂.

Задание к теме 2. СТРОЕНИЕ АТОМА

- 1. Составьте электронную формулу атома элемента с соответствующим порядковым номером;
- 2. Графически изобразите валентные электроны в нормальном и возбужденном состояниях,
 - 3. Укажите окислительно-восстановительные свойства атома.
- 4. Определите устойчивые степени окисления в нормальном и возбужденном состояниях;
 - 5. Приведите примеры соединений в устойчивых степенях окисления,
 - 6. Укажите характер оксидов и гидроксидов.

N₂	Порядковый номер
варианта	элемента
1	21 и 7
2	23 и 5
3	19 и 16
4	22 и б
5	20 и 9
6	24 и 8
7	26 и 15
8	30 и 14
9	29 и 4
10	30 и 17
11	22 и 5
12	27 и 9

N₂	Порядковый номер
варианта	элемента
13	20 и 13
14	31 и 3
15	33 и 11
16	35 и 6
17	12 и 34
18	19 и 32
19	4 и 25
20	49 и 14
21	50 и 33
22	51 и 16
23	53 и 24
24	47 и 7
25	22 и 52

Задание к теме 3. КОВАЛЕНТНАЯ СВЯЗЬ

Определите тип гибридизации и геометрию частиц по алгоритму:

- 1. Найдите центральный атом ц.а. в частице тот атом, с.о. которого выше независимо от знака.
- 2. Определите число периферийных атомов –к.ч, которое указывает на число σ-связей.
- 3. Составьте графическое изображение валентных электронов ц.а. в соответствующей степени окисления.
- 4. Определите тип гибридизации, зная, что в гибридизации участвуют только те валентные А.О., которые образуют σ-связи (орбитали с неспаренными электронами, а также орбитали со спаренными электронами последнего энергетического уровня (Э.У.).
 - 5. Изобразите гибридизацию рисунком.
 - 6. Покажите перекрывания А.О. ц.а. с периферийными атомами.
 - 7. Нарисуйте геометрию частицы.

№ варианта	Частицы	№ варианта	Частицы
1.	CH ₄ , SO ₂	14.	PCl_3, H_2S
2.	BeH ₂ , CO ₂	15.	PF ₅ , CO
3.	BH_3 , SO_3	16.	POCl ₃ , SO ₃
4.	H_2S , SF_4	17.	PCl ₅ , BCl ₃
5.	NH ₃ , SCl ₆	18.	SO ₂ , SeCl ₄
6.	SiH ₄ , SF ₆	19.	H ₃ PO ₄ , SiO ₂
7.	BeCl ₂ , SO ₂ Cl ₂	20.	HClO, NH ₃
8.	BCl ₃ , POCl ₃	21.	$HClO_3, H_2O$
9.	SeH ₂ , H ₂ O	22.	$HClO_2$, PH_3
10.	PH ₃ , CO	23.	HClO ₄ , NH ₃
11.	$[NH_4]^+, CO_2$	24.	H_2CO_3 , SO_2
12.	CCl ₄ , NF ₃	25.	TeF ₆ , PF ₅
13.	SiCl ₄ , BeH ₂		

Задание к теме 4. ЭНЕРГЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ

```
1. Какие из приведённых реакций протекают самопроизвольно:
```

a)
$$4 \text{ HCl}_{(\Gamma)} + O_2 = 2 \text{ H}_2\text{O} + \text{Cl}_2$$
;

6)
$$N_2 + 2 O_2 = 2 NO_2$$
,

если:
$$DG^{\circ}$$
обр. $HCl = -95,27 кДж/моль;$

$$DG^{\circ}$$
обр. $H_2O = -237,5 \text{ кДж/моль};$

$$DG^{\circ}$$
обр. $NO_2 = +51.84$ кДж/моль.

Ответ подтвердите, рассчитав DGx.p.

2. Восстановление PbO₂ водородом протекает по уравнению:

$$PbO_2 + H_2 = H_2O_{(r)} + PbO$$
, DHx.p. = - 182,8 кДж.

Определите теплоту образования РЬО,

если: DH
$$^{\circ}$$
обр.PbO $_{2}$ = - 276,6 кДж/моль;

$$DH^{\circ}$$
обр. $H_2O = -241,84$ кДж/моль

3. Возможно ли самопроизвольное протекание реакции в стандартных условиях: $2 \text{ Al} + \text{Fe}_2\text{O}_3 = \text{Al}_2\text{O}_3 + 2 \text{ Fe},$

если:
$$DG^{\circ}$$
обр. $Fe_2O_3 = -740,99 \text{ кДж/моль};$

$$DG^{\circ}$$
обр. $Al_2O_3 = -1576,4$ кДж/моль.

Ответ подтвердите расчётом.

4. Определите теплоту образования SO₂, если для реакции:

$$SO_2 + 2 H_2S = 3 S + 2 H_2O_{(ж)}$$
, DHx.p. = - 1528 кДж.

и известны теплоты образования:

DH
$$^{\circ}$$
обр.H $_{2}$ O = - 285,84 кДж/моль;

$$DH^{\circ}$$
обр. $H_2S = -20,15$ кДж/моль.

5. Исходя из величины DGx.p. определите, возможна ли реакция:

$$Al_2O_3 + 3 SO_3 = Al_2(SO_4)_3$$

если:
$$DG^{\circ}$$
обр. $Al_2O_3 = -1576,4$ кДж/моль;

$$DG^{\circ}$$
обр. $SO_3 = -370,37$ кДж/моль;

$$DG^{\circ}$$
обр. $Al_2(SO_4)_3 = -3091,9 \ кДж/моль.$

6. Окисление аммиака протекает по уравнению:

теплота образования воды (DH $^{\circ}$ обр. H_2 O) равна -285,84 кДж/моль.

Определите теплоту образования аммиака.

7. Можно ли использовать приведённую ниже реакцию для получения аммиака в стандартных условиях:

$$NH_4Cl + NaOH_{(\kappa)} = NaCl_{(\kappa)} + NH_{3(r)} + H_2O ?$$

Рассчитайте DG°х.р.,

если:
$$DG^{\circ}$$
обр. $H_2O = -228,8$ кДж/моль;

$$DG^{\circ}$$
обр. $NH_4Cl = -343,64$ кДж/моль;

$$DG^{\circ}$$
обр. $NaCl = -384,0 \ кДж/моль;$

$$DG^{\circ}$$
обр. $NH_3 = -16,64$ кДж/моль.

8. Определите тепловой эффект реакции: 2 PbS + 3 O_2 = 2 PbO + 2 S O_2 , зная стандартные значения теплот образования веществ:

 DH° обр.PbS = -94,28 кДж/моль;

 DH° обр.PbO = -217,86 кДж/моль;

 DH° обр. $SO_2 = -296,9 \text{ кДж/моль.}$

9. Какие из приведённых реакций протекают самопроизвольно:

- a) $3 H_2 + N_2 \ll 2 NH_3$;
- 6) $N_2O_4 \ll 2 NO_{2(\Gamma)}$,

если: DG $^{\circ}$ обр.NH $_{3}$ = - 16,64 кДж/моль;

 DG° обр. $N_2O_4 = +98,29$ кДж/моль;

 DG° обр. $NO_2 = +51,84$ кДж/моль.

Ответ подтвердите, рассчитав DGx.p.

10. Реакция горения сероуглерода идёт по уравнению:

$$CS_2 + 3 O_2 = CO_2 + 2 SO_2$$
.

При получении 4,48 л. CO₂, измеренных при нормальных условиях, выделяется 223 кДж тепла. Вычислить тепловой эффект реакции.

11. Прямая или обратная реакция будет протекать при стандартных условиях в системе: $CH_{4(r)} + CO_{2(r)}$ « $2CO_{(r)} + 2H_{2(r)}$,

если: DG° обр. $CH_4 = -50,79 \text{ кДж/моль};$

DG $^{\circ}$ обр.CO $_{2}$ = - 394,38 кДж/моль;

 DG° обр.CO = -137,27 кДж/моль?

Рассчитайте DG прямой реакции.

12. Определите теплоту образования РН₃ из уравнения реакции:

$$2 PH_3 + 4 O_2 = P_2O_5 + 3 H_2O$$
, DHx.p. = - 2360 кДж.,

если известно, что: DH° обр. $P_{2}O_{5} =$ - 1492,0 кДж/моль;

$$DH^{\circ}$$
обр. $H_2O = -285,8 \ кДж/моль.$

- 13. Разложение нитрата аммония возможно по двум схемам:
 - a) $NH_4NO_3 = N_2O + 2 H_2O$;
 - б) $NH_4NO_3 = N_2 + \frac{1}{2}O_2 + 2 H_2O$. Какая реакция более вероятна?

 DG° обр. $NH_4NO_3 = -176,0 \text{ кДж/моль};$

DG $^{\circ}$ обр. $H_{2}O = -218,0$ кДж/моль;

 DG° обр. $N_2O=103,6$ кДж/моль.

14. Вычислите, сколько тепла выделяется при сгорании 200 литров метана по реакции: $CH_4 + 2 O_2 = CO_2 + 2 H_2O$,

если известно, что: DH° обр. $CH_4 = -74,84$ кДж/моль;

DH°обр.CO₂ = - 393,5 кДж/моль;

 DH° обр. $H_2O = -285,8$ кДж/моль.

15. Какие из перечисленных оксидов могут быть восстановлены водородом до свободного металла при 298 К: CaO, SnO_2 , Al_2O_3 , если известны стандартные изобарные потенциалы образования веществ:

 DG° обр. $H_2O = -237,8$ кДж/моль; DG° обр.CaO = -604,2 кДж/моль;

 DG° обр. $SnO_2 = -519,3$ кДж/моль; DG° обр. $Al_2O_3 = 1582$ кДж/моль.

16. Вычислите тепловой эффект реакции при стандартных условиях:

$$C_6H_6 + 15/2 O_2 = 6 CO_2 + 3 H_2O$$
,

если: DH°обр. $C_6H_6 = 82,9 \text{ кДж/моль};$

DH°обр. $H_2O = -285,84 \text{ кДж/моль};$

 DH° обр. $CO_2 = -393,5$ кДж/моль.

17. Прямая или обратная реакция будет протекать при стандартных условиях в системе: $2 \text{ NO} + \text{O}_2$ « 2 NO_2 ,

если: DG° обр.NO = 86,69 кДж/моль;

 DG° обр. $NO_2 = 51,84$ кДж/моль?

18. Вычислите тепловой эффект реакции:

$$Fe_2O_3 + 3 H_2 = 2 Fe + 3 H_2O$$
,

если теплоты образования веществ известны:

 DH° обр. $H_2O = -285,84$ кДж/моль;

 DG° обр. $Fe_2O_3 = -822,2$ кДж/моль.

19. Определить, пойдёт ли самопроизвольно следующая реакция:

$$CO_2 + 4 H_2 = CH_4 + 2 H_2O$$

при следующих данных:

 DS° обр. $CO_2 = 0,231$ кДж/моль *К; DH° обр. $CO_2 = -393,5$ кДж/моль;

DS°обр. $H_2 = 0.13 \text{ кДж/моль *K};$ DH°обр. $CH_4 = -74.8 \text{ кДж/моль};$

 DS° обр. $CH_4 = 0,186$ кДж/моль *K; DH° обр. $H_2O = -285,84$ кДж/моль.

 DS° обр. $H_2O = 0.07 \text{ кДж/моль *K};$

- 20. Сколько тепла можно получить от сжигания 80 г метана? Теплота сгорания метана равна -890 кДж.
- 21. На основании стандартных теплот образования и абсолютных стандартных энтропий веществ определите, пойдёт ли самопроизвольно следующая реакция: $4\ NH_{3\ (r)}+5\ O_{2\ (r)}=4\ NO_{(r)}+6\ H_2O_{(r)}$ при следующих данных:

 DS° обр. $NH_3 = 0,192$ кДж/моль *K; DH° обр. $NH_3 = -46,19$ кДж/моль;

 DS° обр. $O_2 = 0,205$ кДж/моль *K; DH° обр.NO = +37,90 кДж/моль;

 DS° обр.NO = 0,210 кДж/моль *K; DH° обр. $H_2O = -241,84 \text{ кДж/моль}.$

 DS° обр. $H_2O = 0,188$ кДж/моль *К.

- 22. Вычислите, сколько тепла выделится при сгорании 165 л. (н.у.) ацетилена C_2H_2 , если продуктами сгорания являются диоксид углерода и пары воды и выделяется 786 кДж тепла.
- 23. Возможна ли реакция при Т = 500 К:

$$Fe_2O_{3(\kappa)} + 3C = 2Fe + 3CO$$

При следующих данных:

 DS° обр. $Fe_{2}O_{3}=0,089$ кДж/моль *K; DH° обр. $Fe_{2}O_{3}=822,1$ кДж/моль;

 DS° обр.C = 0,006 кДж/моль *К; DH° обр.CO = 110,52 Дж/моль;

 DS° обр. $Fe = 0,027 \ кДж/моль *K;$ DS° обр. $CO = 0,197 \ кДж/моль *K.$

24. При сгорании 11,5 г жидкого этилового спирта выделилось 308,71 кДж. тепла. Напишите термохимическое уравнение реакции, в результате которой образуются пары воды и диоксид углерода.

25. На основании стандартных теплот образования и абсолютных стандартных энтропий соответствующих веществ, вычислите DGx.p.:

$$C_2H_{4(\Gamma)} + 3O_{2(\Gamma)} = 2CO_{2(\Gamma)} + 2H_2O_{(K)}$$

DS°обр. $C_2H_4 = -0,022$ кДж/моль *K;

DH°обр. $C_2H_4 = 52,28 \text{ кДж/моль};$

DS°обр. $O_2 = 0,210 \text{ кДж/моль *K};$

DH $^{\circ}$ обр.CO $_{2}$ = - 391,51 Дж/моль;

DS°обр.CO₂ = 0,213 кДж/моль *K;

 DH° обр. $H_2O = 285,84$ кДж/моль;

DS $^{\circ}$ обр.H₂O= 0,007 кДж/моль *К.

Задание к теме 5. КИНЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ

1. Выведите константу равновесия для обратимой реакции:

$$CuO + H_2$$
 « $Cu + H_2O$

к. г. к. г.

2. В каком направлении будет смещаться равновесие с повышением температуры и давления для реакции:

$$2 SO_2 + O_2$$
 « $2 SO_3$; DHp. = - 196,6 кДж.

Вычислите равновесную концентрацию SO_2 и O_2 , если их исходные концентрации соответственно равны 8 и 6 моль/л, а $[SO_3]_{\text{равн.}}$ =4моль/л

3. Выведите константу равновесия для обратимой реакции:

$$Fe_2O_3 + CO \ll 2 FeO + CO_2$$
.

к. г. к. г.

Найдите равновесные концентрации CO и CO_2 , если их начальные концентрации соответственно равны 0.05 и 0.01 моль/л , а константа равновесия при $1000^{\circ}C$ равна 0.5.

- 4. Реакция окисления оксида серы: 2 $SO_2 + O_2$ « 2 SO_3 , началась при концентрации $SO_2 = 0,06$ моль/л. и $O_2 = 0,05$ моль/л. К моменту наступления равновесия $[SO_3] = 0,02$ моль/л. Вычислите равновесные концентрации остальных веществ.
- 5. В каком направлении будет смещаться равновесие с повышением температуры и давления для реакции:

$$2 \text{ CO} + \text{O}_2$$
 « 2 CO_2 ; DHp. = - 566 кДж.

Выведите константу равновесия.

6. Выведите константу равновесия для обратимой реакции:

$$CaCO_3$$
 « $CaO + CO_2 + \Delta H$

к. к. г.

В каком направлении будет смещаться равновесие с повышением температуры в данной реакции?

- 7. В реакции: $N_2 + 3$ H_2 « 2 NH_3 , в состоянии равновесия концентрации веществ были следующие: $N_2 = 0,1$ моль/л, $H_2 = 0,3$ моль/л, $NH_3 = 0,4$ моль/л. Вычислите исходные концентрации азота и водорода.
- 8. В каком направлении будет смещаться равновесие с повышением температуры и давления для реакции:

4 HCl +
$$O_2$$
 « 2 Cl₂ +2 H₂O; DHp. = -202,4 кДж.

Г. Г. Г. Ж.

Выведите константу равновесия системы.

9. Выведите константу равновесия для обратимой реакции:

$$CO_2 + C \ll 2 CO$$
.

В каком направлении будет смещаться равновесие с повышением давления.

- 10. При 508 °C константа скорости реакции: $H_2 + I_2$ « 2 HI, равна 0,16 моль/л*мин. Исходные концентрации $H_2 = 0,04$ моль/л, а $I_2 = 0,05$ моль/л. Вычислите начальную скорость и скорость в тот момент, когда концентрация водорода станет равной 0,03 моль/л.
- 11.В каком направлении будет смещаться равновесие с повышением температуры и давления для реакции:

$$3 O_2$$
 « $2O_3$; DHp. = $184,6$ кДж.

Выведите константу равновесия системы.

- 12. В системе: $CO_{(\Gamma)} + Cl_{2(\Gamma)}$ « $COCl_{2(\Gamma)}$, начальные концентрации CO и Cl_2 были равны 0,28 моль/л и 0,09 моль/л; равновесная концентрация $COCl_2$ равна 0,02 моль/л. Найдите константу равновесия.
- 13. Выведите константу равновесия для обратимой реакции:

 $SO_{3(r)} + C_{(\kappa)}$ « $SO_{2(r)} + CO_{(r)}$. В каком направлении будет смещаться равновесие с повышением давления?

- 14. Начальные концентрации веществ, участвующих в реакции: $4HCl+O_2$ « $2Cl_2+2H_2O$, составляют: HCl-4,8 моль/л, O_2-1 ,8моль/л, Cl_2-0 ,01моль/л. Определите концентрации всех реагирующих веществ после того, как концентрация O_2 уменьшилась до 1,0 моль/л.
- 15.В каком направлении будет смещаться равновесие с повышением температуры и давления для реакции:

$$N_2 + O_2$$
 « 2 NO; DHp. = 180,7 кДж.

Выведите константу равновесия.

16. Выведите константу равновесия для обратимой реакции:

$$2 SO_2 + O_2 \ll 2SO_3$$
.

Вычислите равновесную концентрацию SO_2 и O_2 , если их исходные концентрации соответственно равны 6 и 4 моль/л, а $[SO_3]_{\text{равн.}}$ =2 моль/л

17.В каком направлении будет смещаться равновесие с повышением температуры и давления для реакции:

$$CO + Cl_2$$
 « $COCl_2$; DHp. = 112,5 кДж.

Вычислите K_p и начальную концентрацию хлора и CO, если равновесная концентрация вещества: $[COCl_2] = 0,3$ моль/л, [CO] = 0,2 моль/л, $[Cl_2] = 1,2$ моль/л

18. Выведите константу равновесия для обратимой реакции:

$$2H_2S + 3\ O_2\ \text{``}\ 2\ SO_2 + 2\ H_2O.$$

В каком направлении будет смещаться равновесие с повышением давления в системе?

- 19. При синтезе аммиака к данному моменту времени прореагировало 0,9моль/л водорода, его начальная концентрация была равна 1,4 моль/л. Определите концентрацию оставшегося водорода и прореагировавшего азота. Выведите константу равновесия системы.
- 20. Выведите константу равновесия для обратимой реакции:

$$CaO + 3 C ext{ } e$$

- 21. Для реакции: $FeO_{(K)} + CO_{(\Gamma)}$ « $Fe_{(K)} + CO_{2(\Gamma)}$ константа равновесия при 1000° С равна 0,5. Начальные концентрации СО и CO_2 были соответственно равны 0,05 моль/л и 0,01 моль/л. Найдите их равновесные концентрации.
- 22.В каком направлении будет смещаться равновесие с повышением температуры и понижением давления для реакции:

$$N_2 + 3 H_2$$
 « 2 NH₃; DHp. = -92,4 кДж?

- Каковы исходные концентрации водорода и азота, если: равновесные концентрации: $[H_2] = 9$ моль/л, $[N_2] = 3$ моль/л, $[NH_3] = 4$ моль/л.
- 23. Концентрация NO и O_2 , образующих NO₂ были соответственно равны 0,03 моль/л и 0,05 моль/л. Как изменится скорость реакции, если концентрацию O_2 повысить до 0,1 моль/л, а NO до 0,06 моль/л?
- 24. Выведите константу равновесия для обратимой реакции:

$$4 P + 5 O_2$$
 « $2 P_2 O_5$.

25. В процессе реакции, протекающей по уравнению: 2 A +3 B « C. За определённый промежуток времени концентрация вещества А уменьшилась на 0,3 моль/л. Как изменилась при этом концентрация вещества В и скорость реакции?

Задание к теме 6. СПОСОБЫ ВЫРАЖЕНИЯ КОНЦЕНТРАЦИЙ

- 1. Какую массу воды следует прибавить к раствору КОН массой 150 г и массовой долей 2 %, чтобы получить раствор с массовой долей КОН 1% и ρ =1,008 г/см³? Рассчитайте: См, Сн 1 % раствора КОН.
- 2. На нейтрализацию 25 мл 0,1 н раствора щавелевой кислоты ($H_2C_2O_4$) израсходовано 20 мл гидроксида натрия. Рассчитайте Сн щелочи.
- 3. К 80 г раствора хлорида калия с массовой долей вещества 15 % прибавили 20 г воды. Рассчитайте ω %, Ch, Cm полученного раствора.
- 4. Какой объём 0,1 н раствора гидроксида калия потребуется на нейтрализацию 20 мл 0,2 н раствора азотной кислоты?
- 5. Смешали 300 г 20 % раствора и 500 г 30 % раствора соляной кислоты. Рассчитайте ω %, Сн, См полученного раствора.
- 6. На нейтрализацию 25 мл 0,1 н раствора КОН израсходовано 50 мл раствора соляной кислоты. Рассчитайте Сн кислоты.

- 7. Какую массу воды следует прибавить к 200 мл 30 % раствора гидроксида калия плотностью 1,33 г/см³, чтобы получить раствор с массовой долей КОН 10 % и $\rho = 1,08$ г/см³? Рассчитайте: См, Сн полученного раствора КОН.
- 8. На нейтрализацию 30 мл 0,16 н раствора гидроксида натрия израсходовано 50 мл раствора серной кислоты. Рассчитайте Сн кислоты.
- 9. Смешали 10 мл 10 % раствора азотной кислоты плотностью 1,054 г/см³ и 100 мл 30 % раствора того же вещества плотностью 1,184 г/см³. Рассчитайте ω %, Сн, См полученного раствора.
- 10. На нейтрализацию 50 мл 0,15 н раствора гидроксида натрия израсходовано 45 мл соляной кислоты. Рассчитайте Сн кислоты.
- 11. К 500 мл 32 % азотной кислоты плотностью 1,20 г/см³ прилили 1 л воды. Чему равна ω %, Сн, См полученного раствора?
- 12. Какой объём 0,05 н раствора серной кислоты потребуется на нейтрализацию 100 мл 0,1 н раствора гидроксида калия?
- 13.Сколько воды надо прибавить к 0,1 л 40% раствора гидроксида калия плотностью 1,411 г/см³, чтобы получить 18 % раствор плотностью 1,16г/см³? Рассчитайте Сн, См полученного раствора.
- 14. Какой объём 0,05 н раствора щавелевой кислоты ($H_2C_2O_4$) потребуется на нейтрализацию 20 мл 0,1 н раствора гидроксида натрия?
- 15. К 256,4 мл 96 % серной кислоты плотностью 1,84 г/см³ прилили воду объёмом 800 мл. Чему равна ω %, Сн, См полученного раствора?
- 16. Какой объём 0,1 н раствора азотной кислоты потребуется на нейтрализацию 50 мл 0,15 н раствора гидроксида калия?
- 17. Сколько воды нужно прибавить к 10 кг раствора гидроксида натрия с массовой долей 80 %, чтобы получить раствор с массовой долей 20 % и плотностью 1,22 г/см³? Рассчитайте См, Сн 20 % щелочи.
- 18. Определите нормальность раствора азотной кислоты, если на нейтрализацию 20 мл её израсходовано 18 мл 0,1 н раствора гидроксида калия.
- 19. Из 300 г 10 % раствора хлорида натрия выпариванием удалили 150 г воды. Чему равна ω %, Сн, См полученного раствора?
- 20. Определите объём 0.05 н раствора щавелевой кислоты $(H_2C_2O_4)$ необходимый на нейтрализацию 20 мл 0.1 н раствора гидроксида натрия.
- 21. К 500 мл раствора серной кислоты с массовой долей кислоты 87% добавили 2 л воды. Чему равна ω %, Сн, См полученного раствора?
- 22. На нейтрализацию 50 мл 0,5 н раствора гидроксида натрия израсходовано 25 мл серной кислоты. Рассчитайте Сн кислоты.
- 23. Какую массу раствора хлорида кальция с массовой долей 22 % надо прибавить к воде массой 500 г для получения раствора с массовой долей соли 12 % и плотностью 1,102 г/см³. Рассчитайте См, Сн 12 % раствора.
- 24. На нейтрализацию 25 мл 0,01 н раствора азотной кислоты израсходовано 20мл гидроксида калия. Рассчитайте Сн щелочи.
- 25. К 250 мл 25 %-ного раствора гидроксида аммония плотностью 0,910 г/см³ прилили 100 мл воды. Чему равна ω %, Сн, См полученного раствора?

Задание к теме 7. РАСТВОРЫ НЕЭЛЕКТРОЛИТОВ

- 1. Осмотическое давление раствора, содержащего 3 г сахара в 250 мл раствора, равно 0,82 атм. при 12°C. Определите молекулярную массу сахара.
- 2. Чему равно давление насыщенного пара над 10% водным раствором мочевины $CO(NH_2)_2$ при 100°C, если P° =101325 Π a?
- 3. При растворении 15 г хлороформа в 400 мл диэтилового эфира, температура кипения повысилась на 0.663°C. Определите молярную массу хлороформа, если плотность диэтилового эфира $\rho = 0.71$ г/см³, Еэф = 2.02.
- 4. Вычислите осмотическое давление раствора, содержащего 18,4 г глицерина $C_3H_8O_3$ в 1 л раствора при 20°C.
- 5. При 25° С давление насыщенного пара воды 3.166 кПа. Найдите при той же температуре давление насыщенного пара над 5% водным раствором мочевины $CO(NH_2)_2$.
- 6. Сколько молей неэлектролита должен содержать 1 л раствора, чтобы его осмотическое давление при 0°С было равно 1 атм.?
- 7. Чему равно давление насыщенного пара над 10 % водным раствором мочевины $CO(NH_2)_2$ при 100°C, если P°= 1013525 Па.
- 8. Сколько этиленгликоля надо взять на 30 л волы для приготовления антифриза, замерзающего при /-40°С/; /этиленгликоль $C_2H_6O_2$?
- 9. Вычислите давление пара раствора, содержащего 34,2 г сахара ($C_{12}H_{22}O_{11}$) в 45,05 г воды при 65°С, если давление паров воды при данной температуре . равно 2,5*10 Па.
- 10. Для приготовления антифриза на 20 л волы взято 6 л глицерина $/C_3H_8O_3/$. Чему равна температура замерзания антифриза?
- 11. Каково осмотическое давление раствора, в 1 л которого содержится 0,2 моля неэлектролита при 17°С?
- 12. Раствор формалина CH_2O имеет осмотическое давление, равное 4,48 атмпри 0°C. Сколько граммов формалина содержал 1 л раствора?
- 13. Раствор, содержащий 5 г нафталина $C_{10}H_8$ в 100 мл диэтилового эфира, кипит при 36,32°C, тогда как чистый эфир кипит при 35°C. Определите эбулиоскопическую константу эфира. /плотность эфира $\rho = 0.71$ г/см³ /
- 14. Раствор, содержащий 6 г мочевины в 50 мл воды, замерзает при /-3,72°C /. Определите молекулярную массу мочевины.
- 15. Найдите при 60° С давление пара над раствором, содержащим 13,68 г сахарозы $C_{12}H_{22}O_{11}$ в 90 г воды, если давление насыщенного пара над водой при той же температур равно 25000 Па.
- 16. Раствор, содержащий в 1 л 3,75 г формалина, обладает осмотическим давлением 2,8 атм. при 0°С. Определите молекулярную массу формалина.
- 17. При растворении 13 г камфоры в 400 мл диэтилового эфира температура кипения повысилась на. 0,455°C. Определите молекулярную массу камфоры, если эбулиоскопическая постоянная эфира Еэф= 2,02.

- 18. При 25°C давление насщенного пара воды составляет 3,166 кПа. Найдите при той же температуре давление насыщенного пара над 15% водным раствором мочевины /CO(NH₂)₂/.
- 19. Раствор формалина CH_2O имеет осмотическое давление равное 4,48 атм, при 0°C. Сколько граммов формалина содержит I л раствора?
- 20. При растворении 0,162 г серы в 20 г бензола температура кипения последнего повысилась на 0,081 °C, Из скольких атомов состоит молекула серы в растворе? $/\text{Ec}_6\text{H}_6 = 2,57/$.
- 21. Найти при 65°C давление пара над раствором, содержащим 13,68 г сахарозы $C_{12}H_{22}O_{11}$ в 90 г воды, если давление насыщенного пара при той же температуре равно 25 кПа.
- 22. При растворении 8,9 г антрацена $C_{14}H_{10}$ в 200 мл этилового спирта температура кипения повысилась на $0,29^{\circ}C$. Вычислите эбулиоскопическую постоянную спирта.
- 23. При какой температуре должен замерзать раствор, содержащий в 250 мл воды 35 г сахарозы $C_{12}H_{22}O_{11}$. / $K_{12}O_{12}=1,86$ /?
- 24. При 20°C давление насыщенного пара воды составляет 3,166 кПа. Найдите при той же температуре давление насыщенного пара над 5% водным раствором мочевины $CO(NH_2)_2$.
- 25. При растворении 0,85г фенола в 50г спирта температура кипения последнего повысилась на 0,21°C. Определите молекулярную массу фенола.

Задание к теме 8. РАСТВОРЫ ЭЛЕКТРОЛИТОВ

№ вари- анта	уравнения дис- социации следу- ющих электро- литов: 2. Напишите в молекуляр- ной и молекулярно-ионной формах уравнения: лярных у молекул		3. Составьте по два молеку- лярных уравнения к каждому молекулярно-ионному урав- нению:
1.	H_2CO_3 ;	$Pb(NO_3)_2 + KI \rightarrow$	$CO_3^{2-} + 2H^+ = CO_2 + H_2O$
	KHS	$CaCl_2 + Na_2CO_3 \rightarrow$	$H^+ + OH^- = H_2O$
2.	$Zn(OH)_2;$	$BaCl_2 + K_2CrO_4 \rightarrow$	$Pb^{2+} + 2I^{-} = PbI_2$
	MgOHCl	$(NH_4)_2CO_3 + Ca(NO_3)_2 \rightarrow$	$NH_4^+ + OH^- = NH_3 + H_2O$
3.	$H_2C_2O_4$;	$AgNO_3 + FeCl_3 \rightarrow$	$Ca^{2+}+CO_3^{2-}=CaCO_3$
	K_2HPO_4	$Ba(OH)_2 + HNO_3 \rightarrow$	$Fe^{3+}+3OH=Fe(OH)_3$
4.	$Cr_2(SO_4)_3$;	$CuCl_2 + NaOH \rightarrow$	$Fe^{2+}+S^{2-}=FeS$
	CuOHCl	$Ba(NO_3)_2 + K_2SO_4 \rightarrow$	$HCO_3 + OH = H_2O + CO_3^2$
5.	$Al(OH)_3;$	$CuSO_4 + Na_2S \rightarrow$	$Cu^{2+}+2OH=Cu(OH)_2$
	$KHCO_3$	$Pb(CH_3COO)_2 + KCl \rightarrow$	$Ni^{2+}+S^{2-}=NiS$
6.	H_2SO_3 ;	$KCN + HCl \rightarrow$	$H^++NO_2=HNO_2$
	Al(OH) ₂ Cl	$CaCl_2 + Na_3PO_4 \rightarrow$	$Zn^{2+}+CO_3^{2-}=ZnCO_3$
7.	$Cr(OH)_3$;	$ZnSO_4 + NaOH \rightarrow$	$3Ca^{2+}+2PO_4^{3-}=Ca_3(PO_4)_2$
	NH_4HS	$MnCl_2 + K_2S \rightarrow$	$NH_4^+ + OH^- = NH_4OH$

№ вари- анта	уравнения дис-		3. Составьте по два молеку- лярных уравнения к каждому молекулярно-ионному урав- нению:
8.	H ₃ PO ₄ ;	NaHCO ₃ + NaOH →	CN +H+=HCN
	$Al(NO_3)_3$	$Ca(NO_3)_2 + K_2SO_3 \rightarrow$	$Ba^{2+} + SO_4^{2-} = BaSO_4$
9.	Na ₂ HPO ₄ ; NiO-	$NH_4OH + HNO_3 \rightarrow$	$Cu^{2+}+S^{2-}=CuS$
	HCl	$Pb(NO_3)_2 + K_2S \rightarrow$	$Zn^{2+}+2OH^{-}=Zn(OH)_{2}$
10.	FeOHSO ₄ ;	$AlCl_3 + NaOH \rightarrow$	$3Mg^{2+}+2PO_4^{3-}=Mg_3(PO_4)_2$
	$(NH_4)_2HPO_4$	$AgNO_3 + Na_2CO_3 \rightarrow$	$Cr^{3+}+3OH = Cr(OH)_3$
11.	CrOHCl ₂ ;	$Zn(OH)_2 + HCl \rightarrow$	$Pb^{2+}+SO_4^{2-}=PbSO_4$
	K_3PO_4	$FeCl_3 + Na_2S \rightarrow$	$2H^{+}+S^{2-}=H_{2}S$
12.	$Fe_2(SO_4)_3$;	$H_2CO_3 + NaOH \rightarrow$	$Fe^{2+}+2OH=Fe(OH)_2$
	$Sn(OH)_2$	$Pb(NO_3)_2 + Na_3PO_4 \rightarrow$	$Ag^++Cl^-=AgCl$
13.	H_2SiO_3 ;	$Ba(OH)_2 + Na_2CO_3 \rightarrow$	$Pb^{2+}+2OH=Pb(OH)_2$
	CrOHSO ₄	$AlCl_3 + Na_2S \rightarrow$	$Cu^{2+}+2OH=Cu(OH)_2$
14.	NaH_2PO_4 ;	$CaCl_2 + H_3PO_4 \rightarrow$	$2Al^{3+}+3S^{2-}=Al_2S_3$
	$Cd(OH)_2$	$AgNO_3 + BaI_2 \rightarrow$	$Ba^{2+}+CO_3^{2-}=BaCO_3$
15.	KH_2PO_4 ;	$Cd(NO_3)_2 + Na_2CO_3 \rightarrow$	$HSO_3 + OH = H_2O + SO_3^2$
	$CrOH(NO_3)_2$	$BaI_2 + Cr_2(SO_4)_3 \rightarrow$	$Mn^{2+}+S^{2-}=MnS$
16.	AlOHCl ₂ ;	$SnCl_2 + Na_3PO_4 \rightarrow$	H ⁺ +CH ₃ COO ⁻ =CH ₃ COOH
	$Co(OH)_2$	$Pb(NO_3)_2 + K_2S \rightarrow$	$Ni^{2+}+2OH=Ni(OH)_2$
17.	$Cr(OH)_2NO_3;$	$CoSO_4 + NaOH \rightarrow$	$3Zn^{2+}+2PO_4^{3-}=Zn_3(PO_4)_2$
	Ni(OH) ₂	CuOHCl + HCl →	$Co^{2+}+S^{2-}=CoS$
18.	HNO ₂ ; CrOHCl ₂	$ZnOHNO_3 + HNO_3 \rightarrow$	$3Ba^{2+}+2PO_4^{3-}=Ba_3(PO_4)_2$
		$Al_2(SO_4)_3 + NaOH \rightarrow$	$Cd^{2+}+S^{2-}=CdS$
19.	$Cr_2(SO_4)_3;$	$Ba(NO_3)_2 + K_2CrO_4 \rightarrow$	$Ca^{2+}+SO_3^{2-}=CaSO_3$
	KHCO ₃	CuOHCl + NaOH →	$3Ag^{+}+PO_{4}^{3-}=Ag_{3}PO_{4}$
20.	AlOHSO ₄ ;	$MnSO_4 + Na_2CO_3 \rightarrow$	$ZnOH^++OH^-=Zn(OH)_2$
	Na ₃ PO ₄	$AgNO_3 + KBr \rightarrow$	$Sn^{2+}+S^{2-}=SnS$
21.	$Cu(OH)_2;$	$Al_2(SO_4)_3 + Na_3PO_4 \rightarrow$	$2Ag^{+}+CO_{3}^{2-}=Ag_{2}CO_{3}$
	$Zn(NO_3)_2$	$PbOHNO_3 + NaOH \rightarrow$	$Mn^{2+} + 2OH = Mn(OH)_2$
22.	$Ba(OH)_2;$	$SnSO_4 + Na_2S \rightarrow$	$3Sn^{2+}+2PO_4^{3-}=Sn_3(PO_4)_2$
	NH ₄ H ₂ PO ₄	FeOHCl + NaOH →	$Cd^{2+}+2OH=Cd(OH)_2$
23.	$H_2S;$	$Ni(NO_3)_2 + Na_2CO_3 \rightarrow$	$3\text{Co}^{2+} + 2\text{PO}_4^{3-} = \text{Co}_3(\text{PO}_4)_2$
2.1	$Ca(NO_3)_2$	$BaBr_2 + CdSO_4 \rightarrow$	$Sn^{2+} + 2OH = Sn(OH)_2$
24.	ZnOHNO ₃ ;	$Pb(NO_3)_2 + Na_3PO_4 \rightarrow$	$Ba^{2+} + SO_3^{2-} = BaSO_3$
25	Ca(OH) ₂	$NiCl_2 + NaOH \rightarrow$	$2Ag^{+}+S^{2-}=Ag_{2}S$
25.	Fe(OH) ₂ NO ₃ ;	$AgF + Na_3PO_4 \rightarrow$	$2Fe^{3+}+3S^{2-}=Fe_2S_3$
	$Cr(NO_3)_3$	$Al_2(SO_4)_3 + K_2S \rightarrow$	$Ni^{2+}+CO_3^{2-}=NiCO_3$

Задание к теме 9. ГИДРОЛИЗ СОЛЕЙ

Составьте ионно-молекулярные уравнения гидролиза солей. Выведите $K_{\scriptscriptstyle \Gamma}$ по первой ступени.

№ варианта	Соли	№ варианта	Соли
1.	$FeCl_2$, $Al_2(CO_3)_3$	13.	Na_2S , $Al(NO_3)_3$
2.	Bi(NO ₃) ₃ , KNO ₂	14.	$Fe(NO_3)_3, K_2S$
3.	FeCl ₃ , Na ₃ PO ₄	15.	Sn(NO ₃) ₂ , Na ₂ SO ₃
4.	$Be(NO_3)_2, K_3PO_4$	16.	$MgCl_2, Cr_2S_3$
5.	SnCl ₂ , K ₂ CO ₃	17.	Ni(NO ₃) ₂ , K ₃ PO ₄
6.	CuCl ₂ , NaNO ₃	18.	$Cu(NO_2)_2, K_2SiO_3$
7.	NiCl ₂ , Li ₃ PO ₄	19.	$Ba(NO_2)_2$, Na_2SiO_3
8.	CuSO ₄ , Na ₂ CO ₃	20.	SnSO ₄ , NH ₄ NO ₃
9.	NiSO ₄ , KCN	21.	$Pb(NO_3)_2, K_2SO_3$
10.	AlCl ₃ , $Cr_2(CO_3)_3$	22.	$Co(NO_3)_2$, $Mn(NO_3)_2$
11.	CrCl ₂ , K ₂ SO3	23.	MnCl ₂ , K ₂ S
12.	FeSO ₄ , NaCN	24.	NH ₄ Cl, MgS
		25.	CoCl ₂ , Al(NO ₃) ₃

Задание к теме 10. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

Подберите коэффициенты электронно-ионным методом, укажите окислитель и восстановитель.

№ вар.	уравнения реакций
1.	$CrCl_3 + Br_2 + KOH \rightarrow K_2CrO_4 + KBr + KCl + H_2O$
	$KI + KIO_3 + H_2SO_4 \rightarrow I_2 + K_2SO_4 + H_2O$
2.	$MnO_2 + KBr + H_2SO_4 \rightarrow MnSO_4 + Br_2 + K_2SO_4 + H_2O$
	$NaNO_3 + Cu + H_2SO_4 \rightarrow CuSO_4 + NO + Na_2SO_4 + H_2O$
3.	$FeSO_4 + HIO_3 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + I_2 + H_2O$
	$Cr_2O_3 + KNO_3 + KOH \rightarrow K_2CrO_4 + KNO_2 + H_2O$
4.	$KMnO_4 + CO + H_2SO_4 \rightarrow MnSO_4 + CO_2 + K_2SO_4 + H_2O$
	$Mg + HNO_3 \rightarrow Mg(NO_3)_2 + N_2 + H_2O$
5.	$K_2Cr_2O_7 + SO_2 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + K_2SO_4 + H_2O$
	$PbS + HNO_3 \rightarrow S + Pb(NO_3)_2 + NO + H_2O$
6.	$Fe_2O_3 + KNO_3 + KOH \rightarrow K_2FeO_4 + KNO_2 + H_2O$
	$K_2MnO_4 + Cl_2 \rightarrow KMnO_4 + KCl$
7.	$K_2Cr_2O_7 + K_2S + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + S + K_2SO_4 + H_2O$
	$Mg + H_2SO_4 \rightarrow MgSO_4 + S + H_2O$
8.	$KNO_3 + KI + H_2SO_4 \rightarrow NO + I_2 + K_2SO_4 + H_2O$
	$K_2Cr_2O_7 + K_2SO_3 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + K_2SO_4 + H_2O$
9.	$NaBrO_3 + NaBr + H_2SO_4 \rightarrow Br_2 + Na_2SO_4 + H_2O$
	$CuI_2 + KMnO_4 + H_2SO_4 \rightarrow I_2 + MnSO_4 + CuSO_4 + K_2SO_4 + H_2O$
10.	$I_2 + Cl_2 + H_2O \rightarrow HIO_3 + HCl$
	$Zn + KIO_3 + H_2SO_4 \rightarrow ZnSO_4 + I_2 + K_2SO_4 + H_2O$
11.	$K_2Cr_2O_7 + KI + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + K_2SO_4 + I_2 + H_2O$
	$H_2S + Cl_2 + H_2O \rightarrow H_2SO_4 + HCl$

№ вар.	Уравнения реакций
12.	$NaBrO_3 + F_2 + NaOH \rightarrow NaBrO_4 + NaF + H_2O$
	$KMnO_4 + FeSO_4 + H_2SO_4 \rightarrow MnSO_4 + Fe_2(SO_4)_3 + K_2SO_4 + H_2O$
13.	$K_2Cr_2O_7 + HCl \rightarrow CrCl_3 + Cl_2 + KCl + H_2O$
	$HClO_4 + SO_2 + H_2O \rightarrow HCl + H_2SO_4$
14.	$KMnO_4 + K_2S + H_2O \rightarrow MnO_2 + S + KOH$
	$Zn + HNO_3 \rightarrow Zn(NO_3)_2 + NH_4NO_3 + H_2O$
15.	$FeSO_4 + HNO_3 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + NO + H_2O$
	$K_2Cr_2O_7 + Al + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + Al_2(SO_4)_3 + K_2SO_4 + H_2O$
16.	$KMnO_4 + H_2S + H_2SO_4 \rightarrow MnSO_4 + S + K_2SO_4 + H_2O$
	$K_2Cr_2O_7 + SnCl_2 + H_2SO_4 \rightarrow CrCl_3 + Sn(SO_4)_2 + K_2SO_4 + H_2O$
17.	$MnO_2 + K_2O + H_2SO_4 \rightarrow MnSO_4 + O_2 + K_2SO_4 + H_2O$
	$KMnO_4 + K_2S + H_2SO_4 \rightarrow MnSO_4 + S + K_2SO_4 + H_2O$
18.	$KMnO_4 + HCl \rightarrow MnCl_2 + Cl_2 + KCl + H_2O$
	$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2S + H_2O$
19.	$K_2Cr_2O_7 + H_2S + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + S + K_2SO_4 + H_2O$
	$K_2Se + NaNO_3 \rightarrow K_2SeO_4 + NaNO_2$
20.	$KMnO_4 + HNO_2 \rightarrow Mn(NO_3)_2 + KNO_2 + KNO_3 + H_2O$
	$Cr_2(SO_4)_3 + Cl_2 + KOH \rightarrow K_2CrO_4 + KCl + K_2SO_4 + H_2O$
21.	$As_2O_3 + HOCl + H_2O \rightarrow H_3AsO_4 + HCl$
	$K_2CrO_4 + NaNO_2 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + NaNO_3 + K_2SO_4 + H_2O$
22.	$K_2MnO_4 + KI + H_2SO_4 \rightarrow MnSO_4 + I_2 + K_2SO_4 + H_2O$
	$Mg + H_2SO_4 \rightarrow MgSO_4 + S + H_2O$
23.	$K_2CrO_4 + HCl \rightarrow CrCl_3 + Cl_2 + KCl + H_2O$
	$KMnO_4 + FeCO_3 + H_2SO_4 \longrightarrow MnSO_4 + Fe_2(SO_4)_3 + CO_2 + K_2SO_4 + H_2O$
24.	$Na_2CrO_4 + NaI + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + I_2 + Na_2SO_4 + H_2O$
	$Cu + HNO_3 \rightarrow Cu(NO_3)_2 + NO + H_2O$
25.	$Cr_2O_3 + KClO_3 + KOH \rightarrow K_2CrO_4 + KCl + H_2O$
	$As2O3 + I2 + H2O \rightarrow As2O5 + HI$

Задание к теме 11. ЭЛЕКТРОХИМИЯ. ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ

Рассмотрите работу гальванического элемента при определённой концентрации электролита по алгоритму:

- 1. Рассчитайте, согласно условию задачи, электродные потенциалы металлов (см. Приложение А, табл. А.1)
- 2. Определите катод и анод.
- 3. Напишите условно-графическую схему элемента.
- 4. Нарисуйте сам элемент.
- 5. Укажите в схеме: а) анод и катод;
 - б) заряды анода и катода;
 - в) направление движения электронов по внешней цепи и ионов по электролитическому мостику.

- 6. Запишите процессы, протекающие на электродах, и дайте им названия.7. Рассчитайте ЭДС гальванического элемента.

№ варианта	Схема гальванического элемента	Концентрация электролита
1	Cu / CuCl ₂ // CdCl ₂ / Cd	$C_{Cu}^{2+} = 0.1 \text{ M}; C_{Cd}^{2+} = 0.001 \text{ M}$
2	$Ag / AgNO_3 // \langle Zn(NO_3)_2 / Zn$	$C_{Ag}^{+}=0.1 \text{ M}; C_{Zn}^{2+}=0.001 \text{ M}$
3	$Pb / Pb(NO_3)_2 // Mg(NO_3)_2 / Mg$	$C_{Pb}^{2+} = 0.1 \text{ M}; C_{Mg}^{2+} = 10^{-4} \text{ M}$
4	Al / Al(SO ₄) ₃ // SnSO ₄ / Sn	$C_{Al}^{3+} = 0.01 \text{ M}; C_{Sn}^{2+} = 0.1 \text{ M}$
5	Fe / FeCl ₂ / CoCl ₂ / Co	$C_{\text{Fe}}^{2+} = 0.1 \text{ M}; C_{\text{Co}}^{2+} = 0.001 \text{ M}$
6	Ni / NiSO ₄ // CuSO ₄ / Cu	$C_{Ni}^{2+} = 0.0001 \text{ M}; C_{Cu}^{2+} = 0.1 \text{ M}$
7	Ag / AgNO ₃ // Cd(NO ₃) ₂ /Cd	$C_{Ag}^{+} = 0.1 \text{ M}; C_{Cd}^{2+} = 0.001 \text{ M}$
8	$Sn / Sn(NO_3)_2 / / Zn(NO_3)_2 / Zn$	$C_{\text{Sn}}^{2+} = 0.0001 \text{ M}; C_{\text{Zn}}^{2+} = 0.1 \text{ M}$
9	Pb / Pb(N0 ₃) ₂ // Fe(N0 ₃) ₂ / Fe	$C_{Pb}^{2+} = 0.001 \text{ M}; C_{Fe}^{2+} = 0.1 \text{ M}$
10	Cu / CuSO ₄ // CoSO ₄ / Co	$C_{Cu}^{2+} = 1 \text{ M}; C_{Co}^{2+} = 0,001 \text{ M}$
11	Ag/AgN0 ₃ // Ni(NO ₃) ₂ / Ni	$C_{Ag}^{+} = 0.001 \text{ M}; C_{Ni}^{2+} = 0.1 \text{ M}$
12	Sn / SnCl ₂ // CoCl ₂ / Co	$C_{\text{Sn}}^{2+} = 0.1 \text{ M}; C_{\text{Co}}^{2+} = 0.001 \text{ M}$
13	РЬ / РЬ(NO ₃) ₂ // Cd(NO ₃) ₂ / Cd	$C_{Pb}^{2+} = 0.01 \text{ M}; C_{Cd}^{2+} = 0.1 \text{ M}$
14	Al/Al(SO ₄) ₃ // H ₂ SO ₄ / H ₂ (Pt)	$C_{Al}^{3+} = 0.1 \text{ M}; \text{ pH} = 2$
15	Си / СиCl ₂ // MgCl ₂ :/ Mg	$C_{\text{Cu}}^{2+} = 0.001 \text{ M}; C_{\text{Mg}}^{2+} = 1 \text{ M}$
16	Zn / ZnCl ₂ // AuCl ₃ / Au	$C_{Zn}^{2+} = 0.1 \text{ M}; C_{Au}^{3+} = 0.0001 \text{ M}$
17	Ag / AgN0 ₃ // Fe(N0 ₃) ₂ / Fe	$C_{Ag}^{+} = 0.0001 \text{ M}; C_{Fe}^{2+} = 1 \text{ M}$
18	Pb / Pb(NO ₃) ₂ // Ni(NO ₃) ₂ / Ni	$C_{Pb}^{2+} = 0.1 \text{ M}; C_{Ni}^{2+} = 0.001 \text{ M}$
19	Sn / SnSO ₄ // MgSO ₄ / Mg	$C_{\text{Sn}}^{2+} = 0.1 \text{ M}; C_{\text{Mg}}^{2+} = 0.01 \text{ M}$
20	Cu / CuCl ₂ / ZnCl ₂ / Zn	$C_{Cu}^{2+} = 1 \text{ M}; C_{Zn}^{2+} = 0,0001 \text{ M}$
21	Ag / AgNO ₃ // Co(NO ₃) ₂ / Co	$C_{Ag}^{+} = 0.1 \text{ M}; C_{Co}^{2+} = 0.001 \text{ M}$
22	Al/Al ₂ (S0 ₄) ₃ // Au ₂ (S0 ₄) ₃ / Au	$C_{Al}^{3+} = 0.0001 \text{ M}; C_{Au}^{3+} = 1 \text{ M}$
23	Pt/PtCl ₂ // HCl / H ₂ (Pt)	$C_{Pt}^{2+} = 0.1 \text{ M}; \text{ pH} = 1.5$
24	Sn/SnCl ₂ // Pb(NO ₃) ₂ / Pb	$C_{\text{Sn}}^{2+} = 10^{-5} \text{ M}; C_{\text{Pb}}^{2+} = 0.1 \text{ M}$
25	$Co / CoSO_4 / / ZnSO_4 / Zn$	$C_{\text{Co}}^{2+} = 0.1 \text{ M}; C_{\text{Zn}}^{2+} = 0.001 \text{ M}$

Задание к теме 12. ЭЛЕКТРОХИМИЯ. ЭЛЕКТРОЛИЗ

1 - 20. Рассмотрите электролиз водного раствора соли по **алгоритму**:

- 1. Составьте уравнения диссоциации веществ.
- 2. Определите, какие частицы будут на электродах.
- 3. Укажите все возможные процессы на катоде и аноде.
- 4. Рассчитайте потенциалы (ϕ^p) возможных процессов (см. Приложение A, табл.
- А.1; Приложение Б, табл. Б.1)
- 5. Определите, какой процесс протекает в первую очередь на электродах.
- 6. Проанализируйте, какая среда около катода и анода.
- 7. Запишите итоговую схему процесса.

№ варианта	Состав и концентрация электролита	рН электролита и материал электродов	
1	0,1 M раствор Zn(NO ₃) ₂	pH = 4, катод – Zn , анод - C	
2	0,1 M раствор MgBr ₂	pH = 6,5, электроды - Pt	
3	0,1 M раствор NiSO ₄	рH = 5. Электроды - Ni	
4	0,1 M раствор FeJ ₂	pH = 4,5, катод –Fe, анод - Pt	
5	1 M раствор KNO3	pH = 8, электроды - Pt	
6	1 M раствор K ₂ SO ₄	pH = 7, катод – Fe, анод - Cu	
7	0,01 M раствор Аи(NO ₃) ₃	pH = 6, катод – Au, анод – Pt	
8	0,1 М раствор СоСІ2	pH = 6,5, катод - Fe, анод - C	
9	0,1 M раствор CuSO ₄	pH = 5, катод - $A1$, анод – Cu	
10	0,01 М раствор FeF3	pH = 6, электроды — C	
11	1 M раствор Cr(NO3)3	pH = 5, катод - Ni, анод – Cr	
12	0,1 M раствор K ₂ SO ₄	pH = 6,5, катод - Fe, анод - Sn	
13	1 M раствор AgNO ₃	pH = 7, катод - Си, анод - Аg	
14	0,001 М раствор НС1	pH = 3, катод - Sn, анод - Cu	
15	0,01 М раствор MnCl ₂	pH = 6, катод - Мп, анод - Pt	
16	0,1 раствор SnCI ₂	pH = 5, катод - Fe, анод - Sn	
17	0,001 M раствор ZnCI ₂	pH = 6,5, катод - С, анод - Zn	
18	0,01 М раствор MgCl ₂	pH = 7, катод - Mg, анод - Pt	
19	0,01 М раствор К ₃ РО ₃	рН = 10, электроды - С	
20	0,1 M раствор ZnS0 ₄	pH = 5, электроды - Zn	

- 21. Сколько граммов меди выделится на катоде, если через раствор медного купороса пропускать ток силой 5 A в течение $\frac{1}{2}$ часа?
- 22. Через раствор сульфата натрия пропускали ток в течение 2 часов, в результате чего выделилось 2 л. кислорода, измеренного при нормальных условиях. Вычислите, чему равна сила тока.

- 23. Через раствор сульфата некоторого металла пропускали ток силой 6 А в течение 45 минут, в результате чего выделилось 5,49 г металла. Вычислите его эквивалент.
- 24. Сколько времени пропускали ток силой 2 А через раствор хлорида натрия, если при этом образовалось 80 г едкого натрия?
- 25. Ток силой 10 А пропускали в течение 20 минут через раствор сульфата меди при медном аноде. На сколько граммов уменьшился масса анода?

Задание к теме 13. ЭЛЕКТРОХИМИЯ. КОРРОЗИЯ МЕТАЛЛОВ

Рассмотрите возможность коррозии сплава в заданной среде при доступе воздуха по **алгоритму:**

- 1. Выпишите потенциалы указанных металлов (ϕ^p) при заданной среде (см. Приложение В, табл. В.1).
- 2. Определите анод и катод в паре, помня, что $\phi_{(K)} > \phi_{(A)}$.
- 3. Запишите процессы, протекающие на катодных и анодных участках, зная химизм в средах.
- 4. Выпишите перенапряжение водорода и кислорода на разных электродах (см. Приложение Γ , табл. Γ .1) (η^{H_2} ; η^{O_2})
- 5. Рассчитайте потенциалы катодных процессов по формулам:

$$\phi^{p}_{H_{2/2H}^{+}} = 0.186 - 0.059 \cdot pH - \eta^{H_{2}}_{Me(K)}$$

$$\phi^{p}_{O_{2}^{-}/2OH} = 1.21 - 0.059 \cdot pH - \eta^{O_{2}}_{Me(K)}$$

6. Определите: а) возможность коррозии, помня правило: «Коррозия возможна, если потенциал любой катодной реакции больше, чем потенциал анодного процесса;

7. Сделайте вывод по результатам расчёта.

№ варианта	Сплав	pН	№ варианта	Сплав	PH	№ варианта	Сплав	PH
1	Fe-Ni	10	9	Mg-Fe	5	17	Fe-Ni	5
2	Cd-Sn	7	10	Zn-Pb	10	18	Pb-Sn	7
3	Со-Си	5	11	Au-Ni	7	19	Ag-Au	10
4	Fe-Pb	10	12	Mg-Ni	5	20	Fe-Mn	5
5	Cd-Ni	7	13	Ni-Sn	10	21	Al-Mg	7
6	Cu-Pb	5	14	Co-Pb	7	22	Cu-Ag	10
7	Fe-Co	10	15	Cd-Ag	5	23	Sn-Pb	5
8	Co-Ni	7	16	Cu-Al	10	24	Zn-Cd	7
						25	Ag-Ni	10

Задание к теме 14. СВОЙСТВА МЕТАЛЛОВ

Написать реферат по следующему плану:

- 1. Электронная конфигурация атома. Возможные степени окисления.
- 2. Нахождение в природе и получение в свободном виде.
- 3. Физические и химические свойства.
- 4. Свойства соединений.
- 5. Сплавы. Применение металла и его соединений.

6.

№ вар.	Металл	№ вар.	Металл	№ вар.	Металл
1	Магний	9	Никель	17	Золото
2	Алюминий	10	Олово	18	Молибден
3	Титан	11	Свинец	19	Вольфрам
4	Ванадий	12	Цинк	20	Платина
5	Хром	13	Медь	21	Висмут
6	Марганец	14	Серебро	22	Сурьма
7	Железо	15	Кадмий	23	Цирконий
8	Кобальт	16	Ртуть	24	Бериллий
				25	Тантал